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The simple system of two two-level identical atoms couple to single-mode optical cavity in the resonance
case is studied for investigating the thermal entanglement. It is interesting to see that the critical temperature is
only dependent on the coefficient of atom-atom dipole-dipole interaction. Based on the mode, we construct and
investigate a entangled quantum Otto engine �QOE�. Expressions for several important performance param-
eters such as the heat transferred, the work done in a cycle, and the efficiency of the entangled QOE in zero G
are derived in terms of thermal concurrence. Some intriguing features and their qualitative explanations are
given. Furthermore, the validity of the second law of thermodynamics is confirmed in the entangled QOE. The
results obtained here have general significance and will be helpful to understand deeply the performance of an
entangled QOE.
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I. INTRODUCTION

Quantum theory, a field opened by Planck and other pio-
neers in 20th century has intrigued scientists. Entanglement,
first noted by Schrödinger, Einstein, Podolsky, and Rosen, is
one of the most striking features of quantum mechanics, and
has recently been associated to various phenomena in differ-
ent areas of physics, for example Hawking radiation in cos-
mology �1,2�, symmetry breaking in high-energy physics �3�,
and in particular, to many areas of condensed-matter physics
such as critical phenomena �3–5�. Entanglement provides the
key ingredient for teleportation schemes �6,7�, one-way
quantum computer �8,9�, and many quantum cryptography
protocols �10,11�. In addition, the relation between thermo-
dynamics and entanglement is also of fundamental impor-
tance, and has been studied by many authors in recent years
�12–14�. Some investigations supporting the way of seeing
entanglement as a thermodynamical property have recently
appeared �15�; in particular the magnetic susceptibility
�14,16� of some solids and their heat capacity �17� were
identified as entanglement witnesses.

In recent years, quantum thermodynamic cycles �such as
quantum engine, quantum refrigerator, quantum heat pump,
quantum amplifier, quantum afterburner, and so on� have be-
come one of the interesting research subjects for people
working in thermodynamics and statistical physics. Several
authors have intensively investigated the performance char-
acteristics of quantum thermodynamic cycles working with
harmonic oscillators, uncoupled spins, particles in a poten-
tial, and two-level systems �TLSs� like qubits, multilevel
systems or quantum optics systems, etc �18–31�. These quan-
tum analyses provide the application foundation of the equi-
librium or nonequilibrium statistical mechanics to the prac-
tical engineering cycles.

Quantum heat engines are characterized by three at-
tributes: the working medium, the cycle of operation, and the
dynamics that govern the cycle. However, in the previous
works, the working medium is considered as an ensemble of
many noninteracting systems. In general, entanglement be-
tween two systems can be generated if they interact with a
single-mode cavity in controlled way. Cavity QED, where
two two-level atoms resonantly interact with a quantized
electromagnetic field inside a cavity, have already proven to
be a useful tool for testing fundamental quantum properties
�32,33�. Here, we propose an implementation of the QHE via
a cavity QED scheme and investigate the influence of both
the quantum entanglement and the interacting systems on
QHE features. These give rise to the following questions:
with the quantum entanglement and the interacting working
medium what is the work extraction of quantum heat engine?
Can such a quantum heat engine improve the work extrac-
tion?

II. MODEL DESCRIPTION

The dipole-dipole interaction of the atoms cannot be ne-
glected when the relative distance of two atoms and the de
Broglie wavelength of two atoms can compare in the cavity.
To see this, we consider two two-level atoms simultaneously
interacting with a single-mode cavity field. The Hamiltonian
for the system is given by

H = H0 + HI, �1�

H0 = ��a†a + �
j=1,2

�� jSj
z, �2�

HI = �g �
j=1,2

�e−i�ta†Sj
− + ei�taSj

+� , �3�

where Sj
z= 1

2 ��ej��ej�− �gj��gj��, Sj
+= �ej��gj� and Sj

−= �gj��ej�
with �ej� and �gj� �j=1,2� being the excited and ground states
of the jth atom, a† and a are the creation and annihilation
operators for the cavity mode, � j is the atomic transition
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frequency, � is the cavity frequency, and g is the atom-cavity
coupling strength �34�.

In the absence of the dipole-dipole interaction, the space
of the two-atom system is spanned by four product states

�g1g2�, �g1e2�, �e1g2�, �e1e2� �4�

with corresponding energies

	
Egg = − �G

Eeg = − ��

Ege = ��

Eee = �G ,

 �5�

where G= 1
2 ��1+�2� and �= 1

2 ��2−�1�. The product states
�e1g2� and �g1e2� form a pair of nearly degenerated states.
When we include the dipole-dipole interaction between the
atoms, the product states combine into two linear superposi-
tions �entangled states�, with their energies shifted from
��� by the dipole-dipole interaction energy.

In the case �=� j −��g�n̄, with n̄ being the mean photon
number of the cavity field, there is no energy exchange be-
tween the atomic system and the cavity. Then the effective
Hamiltonian the two-atom system is �35�

H = �
j=1,2

�� jSj
z + �

i�j

�	ijSi
+Sj

−. �6�

In the basis of the product states �Eq. �4��, effective Hamil-
tonian �6� can be written in a matrix form as �36�

H = ��
− G 0 0 0

0 − � 	21 0

0 	12 � 0

0 0 0 G
 , �7�

where 	=	12=	21 is the coefficient of atom-atom dipole-
dipole interaction.

Consider a system constituted by two two-level identical
��=0� atoms and a single-mode optical cavity. The resulting
energies and corresponding eigenstates of the system are
�37,38�

	
Eg = − �G

Es = �	

Ea = − �	

Ee = �G ,

 �8�

and

	
�g� = �g1��g2�

�s� =
1
�2

��e1��g2� + �g1��e2��

�a� =
1
�2

��e1��g2� − �g1��e2��

�e� = �e1��e2� ,


 �9�

where �s�= 1
�2

��e1��g2�+ �g1��e2�� and �a�= 1
�2

��e1��g2�
− �g1��e2�� are maximally entangled states. Eigenstates �9�,
first introduced by Dicke �37�, are known as the collective
states of two interacting atoms.

The collective states of two two-level identical atoms are
shown in Fig. 1. It is seen that in the collective states repre-
sentation, the system behaves as a single four-level system,
with the ground state �g�, the upper state �e�, and two inter-
mediate states: the symmetric state �s� and the antisymmetric
state �a�. The ground state �g� and the upper state �e� are not
affected by the dipole-dipole interaction, whereas the states
�s� and �a� are shifted from their unperturbed energies by the
amount ��	, the dipole-dipole energy. The energies of the
intermediate states depend on the dipole-dipole interaction
and these states suffer a large shift when the interatomic
separation is small. The most important property of the col-
lective states �s� and �a� is that they are an example of maxi-
mally entangled states of the two-atom system.

III. THERMAL ENTANGLEMENT

The state of the system at thermal equilibrium is ��T�
= 1

Zexp�− H
kT �Z, where Z=Tr�exp�− H

kT �� is the partition func-
tion and k is the Boltzmann’s constant. As ��T� represents a
thermal state, the entanglement in the state is called thermal
entanglement. In order to determine the amount of thermal
entanglement between two two-level identical atoms and a
single-mode optical cavity, we adopt the thermal concurrence
C defined by Wootters �39�,

C = max�0,
1 − 
2 − 
3 − 
4� , �10�

where the 
i �i=1,2 ,3 ,4� are the square roots of the eigen-
values in decreasing order of density-matrix operator �12
=�12��1y � �2y��12

� ��1y � �2y�, where the asterisk indicates
complex conjugation and �y is the Pauli matrix. The thermal
concurrence varies from C=0 for an unentangled state to C
=1 for a maximally entangled state.

In the standard basis ��g1g2� , �g1e2� , �e1g2� , �e1e2��, the
density matrix ��T� is written as

FIG. 1. �Color online� Collective states of two two-level identi-
cal atoms. The energies of the symmetric and antisymmetric states
are shifted by the dipole-dipole interaction 	. The arrows indicate
possible one-photon transitions.
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��T� =
1

Z�
exp�−

�G

kT
� 0 0 0

0 exp�−
�	

kT
��1 + exp�2�	

kT
�� − exp�−

�	

kT
��exp�2�	

kT
� − 1� 0

0 − exp�−
�	

kT
��exp�2�	

kT
� − 1� exp�−

�	

kT
��1 + exp�2�	

kT
�� 0

0 0 0 exp�−
�G

kT
� �11�

where Z=exp�− �G
kT �+exp� �G

kT �+exp�− �	
kT �+exp� �	

kT �. The square roots of the eigenvalues of the matrix �12 are


1 = 
2 =
1

exp�−
�G

kT
� + exp��G

kT
� + exp�−

�	

kT
� + exp��	

kT
� , �12a�


3 =

exp��G

kT
�

exp��G

kT
� + exp��	

kT
� + exp���2G + 	�

kT
� + exp���G + 2	�

kT
� , �12b�


4 =

exp���G + 2	�
kT

�
exp��G

kT
� + exp��	

kT
� + exp���2G + 	�

kT
� + exp���G + 2	�

kT
� . �12c�

From Eqs. �10� and �12a�–�12c�, the concurrence is given by

C = max	 sinh��	

kT
� − 1

cosh��	

kT
� + cosh��G

kT
� ,0
 . �13�

Then we know C=0, if sinh� �	
kT �1, i.e., the critical tem-

perature is given by

TC =
�	

k arcsinh�1�
. �14�

The entanglement vanishes for T�TC. It is interesting to see
that the critical temperature is only dependent on the cou-
pling constant 	 of atom-atom dipole-dipole interaction.

In Fig. 2 we give the plot of thermal concurrence as a
function of G and T for 	=10g, g=2��24�103 Hz is the
coupling constant �40�. For G=0, the maximally entangled
state �a� is the ground state with eigenvalue Ea=−�	. Then
the maximum entanglement is at T=0, i.e., C=1. As T in-
creases, the thermal concurrence decreases as seen from Fig.
2 due to the mixing of other states with the maximally en-
tangled state. For a high value of critical value of GC when
the state �g�= �g1��g2� becomes the ground state, which means

there is no entanglement at T=0. However, by increasing T,
the maximally entangled states �s� and �a� will mix with the
state �g�= �g1��g2�, which makes the entanglement increase
�see Fig. 2�. Moreover, we can see that for a higher value of
	, the system has a stronger entanglement, which is consis-
tent with Fig. 3.

IV. THERMAL ENTANGLED QOE MODEL

The entangled quantum Otto engine �QOE� considered
here is the quantum analog of the classical Otto engines. The

FIG. 2. �Color online� Thermal concurrence vs G and T, for the
parameters 	=10g.
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working medium is envisioned as a system consists of two
two-level identical interacting atoms which resonantly inter-
act with a single-mode optical cavity. A cycle sketch of the
thermal entangled quantum engine consists of four stages as
seen from Fig. 4. The quantum heat-engine cycle consists of
four branches labeled by A, B, C, and D; this is schemati-
cally illustrated in Fig. 4. The four-stroke entangled QOE
includes two isothermal processes �1 and 3� and two quan-
tum adiabatic processes �2 and 4�.

�i� Stage 1: A→B the working medium of two two-level
identical interacting atoms is coupled to a hot reservoir of
temperature TH and its energy structure is kept fixed. In this
isothermal process, the population the four discrete levels is
changing from the population Pi2 , �i=1,2 ,3 ,4� to the popu-
lation Pi1 , �i=1,2 ,3 ,4� and only heat is transferred in this
stage to yield a change in the occupation probabilities, and
no work done as there is no change in the values of the
energy levels,

Pi1 =	
P11 =

exp�− �G

kTH
�

ZH

P21 =

exp��	1

kTH
�

ZH

P31 =

exp�− �	1

kTH
�

ZH

P41 =

exp� �G

kTH
�

ZH


 �15�

and

Pi2 =	
P12 =

exp�− �G

kTL
�

ZL

P22 =

exp��	2

kTL
�

ZL

P32 =

exp�− �	2

kTL
�

ZL

P42 =

exp� �G

kTL
�

ZL
,


 �16�

where

ZH = exp�− �G

kTH
� + exp��	1

kTH
� + exp�− �	1

kTH
� + exp� �G

kTH
�

and

ZL = exp�− �G

kTL
� + exp��	2

kTL
� + exp�− �	2

kTL
� + exp� �G

kTL
� .

�ii� Stage 2: B→C, This is an adiabatic process in the
sense that the total occupation probability of the working
medium remains unchanged. In this process, the occupation
probability Pi1 , �i=1,2 ,3 ,4� is kept fixed. The working
medium is decoupled from the hot reservoir, and the
energy structure is varied from Ei1 , �i=1,2 ,3 ,4� to Ei2 ,
�i=1,2 ,3 ,4�. In this stage, provided the expansion rate is
sufficiently slow according to the quantum adiabatic theo-
rem, the occupation probabilities for the two states remain

FIG. 3. �Color online� Thermal concurrence vs 	 and T, for the
parameters G=10g.

FIG. 4. �Color online� A schematic diagram of a thermal en-
tangled quantum Otto engine based on two two-level atoms of
quantum system. The process from A to B �C to D� is the isothermal
expansion �compression� process, in which the working substance
is put in contact with the high �low�-temperature heat bath. The
processes from B to C and from D to A are two adiabatic processes.
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unchanged. The entangled QOE performs an amount of posi-
tive work when the energy spacings decrease,

Ei1 = 	
E11 = − �G

E21 = �	1

E31 = − �	1

E41 = �G

 �17�

and

Ei2 = 	
E12 = − �G

E22 = �	2

E32 = − �	2

E42 = �G .

 �18�

�iii� Stage 3: C→D, Stage 3 is almost an inverse process
of Stage 1. The working medium is coupled to a cold reser-
voir of temperature TL and its energy structure is kept fixed.
In this isothermal process, the population of the four discrete
level is changing from the initial population Pi1 , �i
=1,2 ,3 ,4� to the population Pi2 , �i=1,2 ,3 ,4� and some heat
is thus transferred but no work is performed in this stage.

�iv� Stage 4: D→A, Stage 4 is also an adiabatic process in
the sense that the total occupation probability of the working
medium remains unchanged. In this process, the occupation
probability Pi2 , �i=1,2 ,3 ,4� is kept fixed. The working me-
dium is decoupled from the cold reservoir, and the energy
structure is varied from Ei2 , �i=1,2 ,3 ,4� to Ei1 , �i
=1,2 ,3 ,4�. In this stage an amount of work is done on the
system.

The expectation value of the measured energy of the sys-
tem with coupling four discrete energy levels is

U = �E� = �
i=1,

4

PijEij �19�

in which Eij , �i=1,2 ,3 ,4 ; j=1,2� are the energy levels and
Pij , �i=1,2 ,3 ,4 ; j=1,2� are the corresponding occupation
probabilities. Infinitesimally,

dU = �
i=1

4

EijdPij + PijdEij �20�

from which we make the following identifications for infini-
tesimal heat transferred dQ and work done dW:

	 dQ = �
i=1

4

EijdPij

dW = �
i=1

4

PijdEij .
 �21�

According to the quantum interpretations of heat trans-
ferred and work done in Eqs. �21�, the heat transferred in

stage 1 QH and in stage 3 QL is given by

QH = �
i=1

4

Ei1�Pi1 − Pi2� = �G�exp� �G

kTH
� − exp�− �G

kTH
�

ZH

+

exp�− �G

kTL
� − exp� �G

kTL
�

ZL
�

+ �	1�exp��	1

kTH
� − exp�− �	1

kTH
�

ZH

+

exp�− �	2

kTL
� − exp��	2

kTL
�

ZL
� �22�

and

QL = �
i=1

4

Ei2�Pi1 − Pi2�

= �G�exp� �G

kTH
� − exp�− �G

kTH
�

ZH

+

exp�− �G

kTL
� − exp� �G

kTL
�

ZL
�

+ �G2�exp��	1

kTH
� − exp�− �	1

kTH
�

ZH

+

exp�− �	2

kTL
� − exp��	2

kTL
�

ZL
� . �23�

From the law of conservation of energy, the net work
done by the entangled QOE in two quantum adiabatic pro-
cesses, i.e., stage 2 and stage 4, is

W = QH − QL

= �
i=1

4

�Ei1 − Ei2��Pi1 − Pi2�

= ��	1 − 	2��exp��	1

kTH
� − exp�− �	1

kTH
�

ZH

+

exp�− �	2

kTL
� − exp��	2

kTL
�

ZL
� . �24�

Then the efficiency of the entangled QOE reads
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� =
W

QH
= 1 −

QL

QH
= 1 − G�exp� �G

kTH
� − exp�− �G

kTH
�

ZH
+

exp�− �G

kTL
� − exp� �G

kTL
�

ZL
� + 	2�exp��	1

kTH
� − exp�− �	1

kTH
�

ZH

+

exp�− �	2

kTL
� − exp��	2

kTL
�

ZL
��G�exp� �G

kTH
� − exp�− �G

kTH
�

ZH
+

exp�− �G

kTL
� − exp� �G

kTL
�

ZL
�

+ 	1�exp��	1

kTH
� − exp�− �	1

kTH
�

ZH
+

exp�− �	2

kTL
� − exp��	2

kTL
�

ZL
� . �25�

The entanglement under our consideration is that of two thermal equilibrium states at the end of stage 1 and stage 3,
denoted by C1 and C2, respectively. They are

C1 =	
0

−
2

exp�− �G

kTH

� + exp� �G

kTH

� + exp�− �	1

kTH

� + exp��	1

kTH

�
+

exp� �G + 2	1��

kTH
� − exp� �G

kTH

�
exp� �G

kTH

� + exp��	1

kTH

� + exp� �2G + 	1��

kTH
� + exp� �G + 2	1��

kTH
� 
 ,

TH � TH,C1
=

�	1

k arcsinh�1�
,

TH  TH,C1
=

�	1

k arcsinh�1�
, �26a�

C2 =	
0

−
2

exp�− �G

kTL

� + exp� �G

kTL

� + exp�− �	2

kTL

� + exp��	2

kTL

�
+

exp� �G + 2	2��

kTL
� − exp� �G

kTL

�
exp� �G

kTL

� + exp��	2

kTL

� + exp� �2G + 	2��

kTL
� + exp� �G + 2	2��

kTL
� 
 ,

TL � TL,C2
=

�	2

k arcsinh�1�
,

TL  TL,C2
=

�	2

k arcsinh�1�
. �26b�

Now, we explore the relation between entanglement and basic thermodynamics quantities and the efficiency of the en-
tangled QOE. From Eqs. �26a� and �26b� we find
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	1 =
kTH

�
ln�− C1 − 2 exp� �G

kTH
� − C1 exp�2�G

kTH
�

−�C1
2 + 4C1 exp� �G

kTH
� + 8 exp�2�G

kTH
� − 2C1

2 exp�2�G

kTH
� + 4C1 exp�3�G

kTH
� + C1

2 exp�4�G

kTH
�� 2�− exp� �G

kTH
�

+ C1 exp� �G

kTH
��� , �27a�

	2 =
kTL

�
ln�− C2 − 2 exp� �G

kTL
� − C2 exp�2�G

kTL
�

−�C2
2 + 4C2 exp� �G

kTL
� + 8 exp�2�G

kTL
� − 2C2

2 exp�2�G

kTL
� + 4C2 exp�3�G

kTL
� + C2

2 exp�4�G

kTL
�� 2�− exp� �G

kTL
�

+ C2 exp� �G

kTL
��� . �27b�

We first start to explore the case of zero atom-cavity coupling strength G=0. Equations �27a� and �27b� become

	1 =
kTH

�
ln�1 + C1 + �2�1 + C1

1 − C1
� , �28a�

	2 =
kTL

�
ln�1 + C2 + �2�1 + C2

1 − C2
� . �28b�

By simple deduction, Eqs. �22�–�24� become

QH =

2k��2 + �2�1 + C1�C2 + �2�− �1 + C1 + �1 + C2� − C1�2 + �2�1 + C2��ln�1 + C1 + �2�1 + C1

1 − C1
�TH

�2 + �2�1 + C1��2 + �2�1 + C2�
, �29�

QL =

2k��2 + �2�1 + C1�C2 + �2�− �1 + C1 + �1 + C2� − C1�2 + �2�1 + C2��ln�1 + C2 + �2�1 + C2

1 − C2
�TL

�2 + �2�1 + C1��2 + �2�1 + C2�
, �30�

W = 2k��2 + �2�1 + C1�C2 + �2�− �1 + C1 + �1 + C2� − C1�2 + �2�1 + C2���ln�1 + C1 + �2�1 + C1

1 − C1
�TH

− ln�1 + C2 + �2�1 + C2

1 − C2
�TL���2 + �2�1 + C1��2 + �2�1 + C2� . �31�
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The efficiency of the entangled QOE in the case of zero
atom-cavity coupling strength is given by

� = 1 −

ln�1 + C2 + �2�1 + C2

1 − C2
�TL

ln�1 + C1 + �2�1 + C1

1 − C1
�TH

� �C = 1 −
TL

TH
.

�32�

It can be verified that the entangled quantum Carnot engine
�QCE� is more efficient than the entangled QOE, even for
any finite cycle.

Equations �29�–�32� analytically give the expressions for
basic thermodynamic quantities and the efficiency in terms
of two thermal concurrences C1 and C2, respectively. It is
found from Fig. 5 that when the case of G=0, each isoline of
efficiency is an open curve and the efficiency is only a mono-
tonically increasing function of C1 and a monotonically de-
creasing function of C2. That is to say, the larger the thermal
concurrence C1, the larger the efficiency and while the
smaller the thermal concurrence C2, the larger the efficiency.

Combining Eqs. �25� and �27�, one can calculate the effi-
ciency of the thermal entangled quantum heat engine in the
case of G�0. But it is too complicate to yield a simple

analytical solution. In order to intuitively investigate how
entanglement affects �, one can obtain the three-dimensional
performance characteristic curves and isoline maps of the
efficiency � varying with the thermal concurrences C1 and
C2 for three representative atom-cavity coupling strength G
=10g, G=30g, and G=50g, as shown in Figs. 6–8.

As can be seen from Figs. 6–8 that in the case of nonzero
�G�0�, the efficiency � no longer increases monotonically
with C1 or decreases monotonically with C2. It is found that
in a high enough G �G�0�, each isoline of efficiency be-
comes a loop instead of an open curve in zero G �G=0�. This
indicates that there exists a maximum value efficiency �max
when the thermal concurrences C1 and C2 attain certain val-
ues. That is to say, the efficiency � is doubtlessly affected by
nonzero G �G�0�.

It is clearly seen from Figs. 6–8 that in a high-enough
atom-cavity coupling strength, the loops also appear when
C1�C2 whereas in a low atom-cavity coupling strength it
seems that only thermal concurrence C2�C1 is relevant.
This can be explained in Fig. 2 that entanglement could in-
crease with the increase of temperature in certain enough G
�G�0�. Thereby C1�C2 would possibly occur for some G
�G�0� values. Furthermore, we find that the maximum ef-
ficiency �max increase with the increase of G �G�0� in the
case of thermal concurrence C1�C2 but the maximum effi-

(b)

(a)

FIG. 5. �Color online� The three-dimensional graph and isoline
map of efficiency � varying with the variables C1 and C2 for the
parameters G=0, TH=2.0�10−5 K, and TL=1.0�10−5 K.

(b)

(a)

FIG. 6. �Color online� The three-dimensional graph and isoline
map of efficiency � varying with the variables C1 and C2 for the
parameters G=10g, TH=2.0�10−5 K, and TL=1.0�10−5 K.
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ciency �max decrease with the increase of G �G�0� in the
case of thermal concurrence C1C2. It is noteworthy that
the maximum efficiency will be different for different G

�G�0�. Moreover, we find that �C=1−
TL

TH
is not achievable

in these four figures. Therefore the second law of thermody-
namics holds all the while.

V. CONCLUSION

In conclusion, we find that the thermal entanglement ex-
ists for the system of two two-level identical atoms couple to
single-mode optical cavity. Based on the mode, we have in-
troduced a kind of entangled QOE model. We have presented
some interesting results in the entangled QOE. This quantum
heat engine can extract work like a two-level quantum heat
engine in high and low temperatures, whereas it works in a
different way at intermediate temperatures. Expressions for

several important performance parameters such as the heat
transferred, the work done in a cycle, and the efficiency of
the entangled QOE in zero G �G=0� are derived in terms of
thermal concurrence. We investigate the influence of en-
tanglement on the efficiency � for zero G �G=0� and non-
zero G �G�0�. For zero G �G=0� and nonzero G �G�0�,
we graphically explore the variation in four thermodynamic
quantities and the efficiency with C1 and C2, respectively.
Some intriguing features and their qualitative explanations
are given.
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(b)

(a)

FIG. 7. �Color online� The three-dimensional graph and isoline
map of efficiency � varying with the variables C1 and C2 for the
parameters G=30g, TH=2.0�10−5 K, and TL=1.0�10−5 K.

(b)

(a)

FIG. 8. �Color online� The three-dimensional graph and isoline
map of efficiency � varying with the variables C1 and C2 for the
parameters G=50g, TH=2.0�10−5 K, and TL=1.0�10−5 K.

THERMAL ENTANGLEMENT IN TWO-ATOM CAVITY QED… PHYSICAL REVIEW E 79, 041113 �2009�

041113-9



�1� C. Callan and F. Wilczek, Phys. Lett. B 333, 55 �1994�.
�2� M. B. Plenio, J. Eisert, J. Dreißig, and M. Cramer, Phys. Rev.

Lett. 94, 060503 �2005�.
�3� T. J. Osborne and M. A. Nielsen, Phys. Rev. A 66, 032110

�2002�.
�4� A. Osterloh, L. Amico, G. Falci, and R. Fazio, Nature �Lon-

don� 416, 608 �2002�.
�5� G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett.

90, 227902 �2003�.
�6� C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres,

and W. K. Wootters, Phys. Rev. Lett. 70, 1895 �1993�.
�7� D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter,

and A. Zeilinger, Nature �London� 390, 575 �1997�.
�8� R. Raussendorf, D. E. Browne, and H. J. Briegel, J. Mod. Opt.

49, 1299 �2002�.
�9� P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Wein-

furter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, Nature
�London� 434, 169 �2005�.

�10� A. K. Ekert, Phys. Rev. Lett. 67, 661 �1991�.
�11� J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, Nature

�London� 410, 1067 �2001�.
�12� V. Vedral and E. Kashefi, Phys. Rev. Lett. 89, 037903 �2002�.
�13� M. C. Arnesen, S. Bose, and V. Vedral, Phys. Rev. Lett. 87,

017901 �2001�.
�14� S. Gosh, T. F. Rosenbaum, G. Aeppli, and S. N. Coppersmith,

Nature �London� 425, 48 �2003�.
�15� A. Ferreira, A. Guerreiro, and V. Vedral, Phys. Rev. Lett. 96,

060407 �2006�.
�16� V. Vedral, Nature �London� 425, 28 �2003�.
�17� M. Wiesniak, V. Vedral, and C. Brukner, New J. Phys. 7, 258

�2005�.
�18� A. E. Allahverdyan, R. S. Gracia, and T. M. Nieuwenhuizen,

Phys. Rev. E 71, 046106 �2005�.
�19� C. M. Bender, D. C. Brody, and B. K. Meister, J. Phys. A 33,

4427 �2000�.
�20� T. Feldmann and R. Kosloff, Phys. Rev. E 68, 016101 �2003�.
�21� J. P. Palao, R. Kosloff, and J. M. Gordon, Phys. Rev. E 64,

056130 �2001�.
�22� D. Segal and A. Nitzan, Phys. Rev. E 73, 026109 �2006�.
�23� N. Erez, G. Gordon, M. Nest, and G. Kurizki, Nature �London�

452, 724 �2008�.
�24� H. T. Quan, Y. X. Liu, C. P. Sun, and F. Nori, Phys. Rev. E 76,

031105 �2007�.
�25� M. O. Scully, Y. Rostovtsev, Z. E. Sariyanni, and M. S.

Zubairy, Physica E 29, 29 �2005�.
�26� M. O. Scully, M. S. Zubairy, G. S. Agarwal, and H. Walther,

Science 299, 862 �2003�.
�27� M. O. Scully, Phys. Rev. Lett. 88, 050602 �2002�.
�28� M. O. Scully, Phys. Rev. Lett. 87, 220601 �2001�.
�29� A. E. Allahverdyan and T. M. Nieuwenhuizen, Phys. Rev. Lett.

85, 1799 �2000�.
�30� D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 �1998�.
�31� H. T. Quan, Y. D. Wang, Y. X. Liu, C. P. Sun, and F. Nori,

Phys. Rev. Lett. 97, 180402 �2006�.
�32� J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys.

73, 565 �2001�.
�33� G. Raithel, C. Wagner, H. Walther, L. M. Narducci, and M. O.

Scully, in Advances in Atomic, Molecular and Optical Physics,
edited by P. Berman �Academic, New York, 1994�.

�34� S. B. Zheng and G. C. Guo, Phys. Rev. Lett. 85, 2392 �2000�.
�35� S. B. Zheng, Phys. Rev. Lett. 87, 230404 �2001�.
�36� Z. Ficeka and R. Tanas, Phys. Rep. 372, 369 �2002�.
�37� R. H. Dicke, Phys. Rev. 93, 99 �1954�.
�38� R. H. Lehmberg, Phys. Rev. A 2, 883 �1970�.
�39� S. Hill and W. K. Wootters, Phys. Rev. Lett. 78, 5022 �1997�.
�40� M. Brune, E. Hagley, J. Dreyer, X. Maitre, A. Maali, C.

Wunderlich, J. M. Raimond, and S. Haroche, Phys. Rev. Lett.
77, 4887 �1996�.

WANG, LIU, AND HE PHYSICAL REVIEW E 79, 041113 �2009�

041113-10


